3,526 research outputs found

    A non-equilibrium dynamic mechanism for the allosteric effect

    Full text link
    Allosteric regulation is often viewed as thermodynamic in nature. However protein internal motions during an enzymatic reaction cycle can be slow hopping processes over numerous potential barriers. We propose that regulating molecules may function by modifying the nonequilibrium protein dynamics. The theory predicts that an enzyme under the new mechanism has different temperature dependence, waiting time distribution of the turnover cycle, and dynamic fluctuation patterns with and without effector. Experimental tests of the theory are proposed.Comment: accepted by Phys. Rev. Lett. Major revisions were made to fit the style. 4 pages, 2 figure

    Electronic Raman scattering on under-doped Hg-1223 high-Tc superconductors:investigations on the symmetry of the order parameter

    Full text link
    In order to obtain high quality, reliable electronic Raman spectra of a high-Tc superconductor compound, we have studied strongly under-doped HgBa2Ca2Cu3O8+d. This choice was made such as to i)minimize oxygen disorder in the Hg-plane generated by oxygen doping ii) avoid the need of phonon background subtraction from the raw data iii)eliminate traces of parasitic phases identified and monitored on the crystal surface. Under these experimental conditions we are able to present the pure electronic Raman response function in the B2g, B1g, A1g+B2g and A1g+B1g channels. The B2g spectrum exhibits a linear frequency dependence at low energy whereas the B1g one shows a cubic-like dependence. The B2g and B1g spectra display two well defined maxima at 5.6kBTc and 9kBTc respectively. In mixed A1g channels an intense electronic peak centered around 6.4 kBTc is observed. The low energy parts of the spectra correspond to the electronic response expected for a pure dx2-y2 gap symmetry and can be fitted up to the gap energy for the B1g channel. However, in the upper parts, the relative position of the B1g and B2g peaks needs expanding the B2g Raman vertex to second order Fermi surface harmonics to fit the data with the dx2-y2 model. The sharper and more intense A1g peak appears to challenge the Coulomb screening efficiency present for this channel. As compared to previous data on more optimally doped, less stoichiometric Hg-1223 compounds, this work reconciles the electronic Raman spectra of under- doped Hg-1223 crystals with the dx2-y2 model, provided that the oxygen doping is not too strong. This apparent extreme sensitivity of the electronic Raman spectra to the low lying excitations induced by oxygen doping in the superconducting state is emphasized here and remains an open question.Comment: 12 pages, 5 figure

    A core genetic module : the Mixed Feedback Loop

    Full text link
    The so-called Mixed Feedback Loop (MFL) is a small two-gene network where protein A regulates the transcription of protein B and the two proteins form a heterodimer. It has been found to be statistically over-represented in statistical analyses of gene and protein interaction databases and to lie at the core of several computer-generated genetic networks. Here, we propose and mathematically study a model of the MFL and show that, by itself, it can serve both as a bistable switch and as a clock (an oscillator) depending on kinetic parameters. The MFL phase diagram as well as a detailed description of the nonlinear oscillation regime are presented and some biological examples are discussed. The results emphasize the role of protein interactions in the function of genetic modules and the usefulness of modelling RNA dynamics explicitly.Comment: To be published in Physical Review

    Two Gap State Density in MgB2_{2}: A True Bulk Property or A Proximity Effect?

    Full text link
    We report on the temperature dependence of the quasiparticle density of states (DOS) in the simple binary compound MgB2 directly measured using scanning tunneling microscope (STM). To achieve high quality tunneling conditions, a small crystal of MgB2 is used as a tip in the STM experiment. The ``sample'' is chosen to be a 2H-NbSe2 single crystal presenting an atomically flat surface. At low temperature the tunneling conductance spectra show a gap at the Fermi energy followed by two well-pronounced conductance peaks on each side. They appear at voltages VS±3.8_{S}\simeq \pm 3.8 mV and VL±7.8_{L}\simeq \pm 7.8 mV. With rising temperature both peaks disappear at the Tc of the bulk MgB2, a behavior consistent with the model of two-gap superconductivity. The explanation of the double-peak structure in terms of a particular proximity effect is also discussed.Comment: 4 pages, 3 figure

    Intrinsic Low Temperature Paramagnetism in B-DNA

    Full text link
    We present experimental study of magnetization in λ\lambda-DNA in conjunction with structural measurements. The results show the surprising interplay between the molecular structures and their magnetic property. In the B-DNA state, λ\lambda-DNA exhibits paramagnetic behaviour below 20 K that is non-linear in applied magnetic field whereas in the A-DNA state, remains diamagnetic down to 2 K. We propose orbital paramagnetism as the origin of the observed phenomena and discuss its relation to the existence of long range coherent transport in B-DNA at low temperature.Comment: 5 pages, 4 figures, submitted to Physical Review Letters October 200

    A prospective study assessing agreement and reliability of a geriatric evaluation.

    Get PDF
    The present study takes place within a geriatric program, aiming at improving the diagnosis and management of geriatric syndromes in primary care. Within this program it was of prime importance to be able to rely on a robust and reproducible geriatric consultation to use as a gold standard for evaluating a primary care brief assessment tool. The specific objective of the present study was thus assessing the agreement and reliability of a comprehensive geriatric consultation. The study was conducted at the outpatient clinic of the Service of Geriatric Medicine, University of Lausanne, Switzerland. All community-dwelling older persons aged 70 years and above were eligible. Patients were excluded if they hadn't a primary care physician, they were unable to speak French, or they were already assessed by a geriatrician within the last 12 months. A set of 9 geriatricians evaluated 20 patients. Each patient was assessed twice within a 2-month delay. Geriatric consultations were based on a structured evaluation process, leading to rating the following geriatric conditions: functional, cognitive, visual, and hearing impairment, mood disorders, risk of fall, osteoporosis, malnutrition, and urinary incontinence. Reliability and agreement estimates on each of these items were obtained using a three-way Intraclass Correlation and a three-way Observed Disagreement index. The latter allowed a decomposition of overall disagreement into disagreements due to each source of error variability (visit, rater and random). Agreement ranged between 0.62 and 0.85. For most domains, geriatrician-related error variability explained an important proportion of disagreement. Reliability ranged between 0 and 0.8. It was poor/moderate for visual impairment, malnutrition and risk of fall, and good/excellent for functional/cognitive/hearing impairment, osteoporosis, incontinence and mood disorders. Six out of nine items of the geriatric consultation described in this study (functional/cognitive/hearing impairment, osteoporosis, incontinence and mood disorders) present a good to excellent reliability and can safely be used as a reference (gold standard) to evaluate the diagnostic performance of a primary care brief assessment tool. More objective/significant measures are needed to improve reliability of malnutrition, visual impairment, and risk of fall assessment before they can serve as a safe gold standard of a primary care tool

    Fermi Velocity Spectrum and Incipient Magnetism in TiBe2

    Full text link
    We address the origin of the incipient magnetism in TiBe2_2 through precise first principles calculations, which overestimate the ferromagnetic tendency and therefore require correction to account for spin fluctuations. TiBe2_2 has sharp fine structure in its electronic density of states, with a van Hove singularity only 3 meV above the Fermi level. Similarly to the isovalent weak ferromagnet ZrZn2_2, it is flat bands along the K-W-U lines of hexagonal face of the fcc Brillouin zone make the system prone to magnetism, and more so if electrons are added. We find that the Moriya BB coefficient (multiplying ωq\frac{\omega}{q} in the fluctuation susceptibility Δχ(q,ω)\Delta \chi(q,\omega)) is divergent when the velocity vanishes at a point on the Fermi surface, which is very close (3 meV) to occurring in TiBe2_2. In exploring how the FM instability (the qq=0 Stoner enhancement is S60S\approx 60) might be suppressed by fluctuations in TiBe2_2, we calculate that the Moriya A coefficient (of q2q^2) is negative, so qq=0 is not the primary instability. Explicit calculation of χo(q)\chi_o(q) shows that its maximum occurs at the X point (1,0,0)2πa(1,0,0)\frac{2\pi}{a}; TiBe2_2 is thus an incipient {\it anti}ferromagnet rather than ferromagnet as has been supposed. We further show that simple temperature smearing of the peak accounts for most of the temperature dependence of the susceptibility, which previously had been attributed to local moments (via a Curie-Weiss fit), and that energy dependence of the density of states also strongly affects the magnetic field variation of χ\chi
    corecore